KONSTRUKCE ŠIKMÝCH STŘECH

Bohumíl Straka, Miloslav Novotný, Jana Krupicová, Milan Šmak, Karel Šuhajda, Zdeněk Vejpustek

Scia Engineer
Komplexní software pro návrh a posudek konstrukcí dle Eurokódů

Eurokódy integrované v software
- více než 20 let vývoje software
- nejrozšířenější systém pro statiku
- nejúplnější posudky na trhu
- ocel, beton, dřevo a hliník dle EC
- veškeré Národní přílohy
- nepřetržitý vývoj a aktualizace

Nemetschek Scia, s.r.o.
Evropská 2591/33e, 160 00 Praha, tel.:226 205 600
Slavíčkova 827/1a, 638 00 Brno, tel.:530 501 570
info@scia.cz, www.scia.cz
KONSTRUKCE ŠIKMÝCH STŘECH

Bohumil Straka, Miloslav Novotný, Jana Krupicová, Milan Šmak, Karel Šuhajda, Zdeněk Vejpustek

Grada Publishing
Konstrukce šikmých střech
Ing. Jana Krupicová, Ph.D., Ing. Milan Šmak, Ph.D., Ing. Karel Šuhajda, Ph.D.,
Ing. Zdeněk Vejpustek, Ph.D.

Tíráž tištěné verze:

Vydala Grada Publishing, a.s.
U Průhonu 22, Praha 7
obchod@grada.cz, www.grada.cz
tel.: +420 234 264 401, fax: +420 234 264 400
jako svou 5078. publikaci
Odpovědná redaktorka Eva Škrabalová
Sazba Martina Mojzesová
Fotografie na obálce – Fotobanka Allphoto
Fotografie v textu z archivu autorů, pokud není uvedeno jinak
Ilustrace z archivu autorů
Počet stran 232
První vydání, Praha 2013
Vytiskla Tiskárna PROTISK, s. r. o., České Budějovice

© Grada Publishing, a.s., 2013
Cover Design © Grada Publishing, a.s., 2013

Názvy produktů, firem apod. použité v knize mohou být ochrannými známkami
nebo registrovanými ochrannými známkami příslušných vlastníků.

Elektronické publikace:
ISBN 978-80-247-8379-6 (elektronická verze ve formátu PDF)
Obsah

Úvod .. 7

1 Vlivy působící na střešní konstrukce ... 9
 1.1 Vliv zemepisné polohy ... 9
 1.1.1 Vliv teploty a vlhkosti vnějšího vzduchu 10
 1.1.2 Vliv slunečního záření ... 10
 1.1.3 Vlivy atmosférických srážek 11
 1.1.4 Vliv seismicity ... 12
 1.2 Spad a chemické exhalece ... 12
 1.3 Biologické a bakteriologické vlivy 13
 1.4 Hluk a chvění ... 13
 1.5 Vlivy vnějšího a vnitřního provozu 14
 1.6 Vliv vlastní tíhy střešní konstrukce 14

2 Základní tvary šikmých střech ... 15
 2.1 Pultové střechy ... 16
 2.2 Sedlové střechy .. 16
 2.3 Valbové a polovalbové střechy 17
 2.4 Stanové střechy ... 18
 2.5 Mansardové střechy .. 18
 2.6 Pílové střechy .. 19
 2.7 Zakřivené střešní plochy ... 20

3 Odvodnění šikmých střech ... 21
 3.1 Návrh tvaru a spádování střech 21
 3.2 Systém odvodnění šikmých střech 22
 3.3 Návrh odvodňovacího systému šikmých střech 27

4 Střešní pláště šikmých střech .. 29
 4.1 Základní požadavky na střechy .. 29
 4.1.1 Vdotěsnicí funkce .. 30
 4.1.2 Tepeřítechnické požadavky 33
 4.1.3 Akustické požadavky .. 39
 4.1.4 Požárníbezpečnostní požadavky 42
 4.2 Používané prvky ve skladbách šikmých střech 47
 4.2.1 Krytina ... 48
 4.2.2 Vzdutková vrstva .. 76
 4.2.3 Doplňková vdotěsnicí vrstva 80
 4.2.4 Tepeří izolace ... 82
 4.2.5 Parozábrany .. 95
 4.3 Jednoplástové šikmé střechy ... 97
 4.3.1 Výhody a nevýhody ... 99
 4.3.2 Příklady skladeb ... 100
 4.4 Dvouplástové šikmé střechy ... 102
 4.4.1 Výhody a nevýhody ... 103
 4.4.2 Příklady skladeb ... 105
4.5 Tříplášťové šikmé střechy .. 108
 4.5.1 Výhody a nevýhody .. 109
 4.5.2 Příklady skладeb .. 109
 4.5.3 Typické detaily .. 110

5 Konstruční soustavy šikmých střech 113
 5.1 Základní tradiční soustavy .. 114
 5.1.1 Krokevní a hambalkové soustavy 114
 5.1.2 Vaznicové soustavy ... 118
 5.2 Soudobé a perspektivní soustavy 123
 5.2.1 Vazníkové soustavy ... 124
 5.2.2 Rámové soustavy ... 134
 5.2.3 Obloukové soustavy ... 136
 5.2.4 Kombinované konstruční dílice a soustavy 140
 5.2.5 Střechy srubových staveb 141
 5.2.6 Prostorové soustavy .. 143
 5.3 Nástavby a vestavby .. 152

6 Navrhování a posuzování dřevěných konstrukcí šikmých střech 157
 6.1 Základní postup při návrhu konstrukce zastřešení 157
 6.2 Materiály pro nosné konstrukce 158
 6.3 Spojovací prostředky pro připoje nosných prvků a dílců 164
 6.4 Statické řešení ... 168
 6.4.1 Základní způsoby namáhání a posouzení konstrukce 168
 6.4.2 Výpočtové modely konstrukcí šikmých střech 175
 6.4.3 Výpočtové modely vybraných konstruktivních soustav 179

7 Ochrana konstrukcí šikmých střech 187
 7.1 Ochrana proti povětrnostním vlivům a biotickým škůdcům 187
 7.2 Ochrana střešní konstrukce proti požáru 191

8 Průzkumy, poruchy a rekonstrukce střech 199
 8.1 Hlavní zásady při průzkumu střešních konstrukcí 199
 8.2 Vady, poruchy a rekonstrukce nosných střešních konstrukcí 201
 8.3 Vady, poruchy a rekonstrukce střešních pláštů 206
 8.3.1 Vady a poruchy způsobené špatným projektem 206
 8.3.2 Poruchy způsobené vadami použitých materiálů 208
 8.3.3 Poruchy způsobené nekvalitním provedením střechy 208
 8.3.4 Poruchy způsobené změnami okrajových podmínek 211
 8.3.5 Poruchy způsobené překročením předpokládané životnosti 211
 8.3.6 Poruchy způsobené zanedbanou údržbou 212
 8.3.7 Poruchy vzniklé havarií 212
 8.3.8 Poruchy detailů ... 212
 8.3.9 Opravy a rekonstrukce střešních pláštů šikmých střech 213

Literatura ... 223

Rejstřík ... 227
Úvod

Publikace je zpracována pro odbornou veřejnost, investory, projektanty stavebních konstrukcí, stavebníky a uživatele domů a dalších objektů pozemních staveb zastřešovaných šikmými střechami. Může být rovněž vhodným studijním materiálem pro studenty v oboru pozemních staveb. Tradičním, avšak stále perspektivním a nejvíce používaným materiálem pro nosné konstrukce šikmých střech je dřevo. Z toho důvodu je publikace zaměřena na konstrukce vyrobené ze dřeva a materiálů na bázi dřeva.

Na trhu je v současné době řada odborné technické literatury určené pro různé okruhy čtenářů, která se zabývá problematikou zastřešování budov. Snahou autorského kolektivu bylo vytvořit ucelený přehled soudobých a nových typů konstrukcí, střešních pláštů a problémů šikmých střech, včetně souvislostí s aktuálními požadavky, jež je potřeba při jejich návrhu a realizaci dodržet. Téma se jeví aktuální zejména v době, kdy se zvyšují nároky na energetickou náročnost budov a efektivní využívání podstřešního prostoru prováděním půdních vestaveb či nástaveb u stávajících objektů.

Do publikace byla zařazena problematika zahrnující:

• přehled vlivů působících na střešní konstrukce,
• typy střešních pláštů a jejich skladbu,
• tradiční, soudobé a nové typy střešních konstrukčních soustav,
• zásady navrhování a posuzování dřevěných střešních konstrukcí,
• používané materiály a spojovací prostředky,
• způsoby ochrany dřevěných konstrukcí proti biotickým škůdcům,
• požární odolnost a ochranu konstrukcí proti požáru,
• vady a poruchy střešních pláštů,
• vady a poruchy nosných konstrukcí střech,
• příklady rekonstrukce střešních pláštů a nosných konstrukcí střech.

Střešní konstrukce patří mezi nejexponovanější části stavebního objektu. Obecně sestávají z nosné konstrukce a střešního pláště. Základní funkcí střechy je chránit objekt proti nepříznivým klimatickým vlivům, tedy zejména před srážkami, větrem a v neposlední řadě před přímým slunečním svitem. Spolu s ostatními oplášťujícími konstrukcemi se podílí na zabezpečení požadovaného stavu vnitřního prostředí v objektu. Je tedy zřejmé, že střešní konstrukce jsou jednou ze základních konstrukcí stavebních objektů a jejich správné řešení významně přispívá k celkové trvanlivosti a životnosti stavby. Rozdělení střech je dáno normou ČSN 73 1901 Navrhování střech. Základní ustanovení. 02/2011, kde jsou střechy děleny podle sklonu vnějšího povrchu střešní plochy na:

• šikmé střechy: střechy se sklonem vnějšího povrchu 5° < α ≤ 45°,
• strmé střechy: střechy se sklonem vnějšího povrchu 45°< α < 90°,
• střechy se sklonem do 5° jsou označovány za ploché.

Střechy obecně náleží mezi jedny z nejsložitějších stavebních konstrukcí, zřejmě také proto, že jejich poruchy či vady se poměrně rychle projeví a vyžadují obvykle okamžitou opravu, zejména pokud dochází k zatékání do objektu. Závady střech se ovšem neprojevují jen zatékáním, ale rovněž zvýšenou kondenzací vodní páry uvnitř konstrukce, která se může projevit později. Nejen z těchto důvodů jsou na zastřešení kladený poměrně významně

Úvod 7
Konstrukce šikmých střech

a specifické požadavky. Tak jako všechny stavební konstrukce musejí i tyto po dobu své životnosti splňovat zejména požadavky dle vyhlášky MMR 268/2009 Sb., o technických požadavcích na stavby, a to:

- mechanickou odolnost a stabilitu,
- požární bezpečnost,
- ochranu zdraví, zdravých životních podmínek a životního prostředí,
- ochranu proti hluku,
- tepelnou ochranu a úsporu energie,
- bezpečnost při užívání.

Mezi další důležité požadavky patří také celkový architektonický vzhled stavebního objektu (u mnohých objektů je střecha rozhodující architektonický útvar objektu). Tvar a konstrukce šikmé střechy jsou tudíž velmi závislé na architektonickém a dispozičním řešení stavebního objektu (zejména půdorysném řešení a účelu). U individuálních staveb, jako jsou sportovní, víceúčelové, rekreační a jiné objekty, je v mnoha případech architektonické řešení nadřazeno řešení stavebně-technickému. Mnohdy jsou požadavky na tvary, sklony střech, ale také na samotné střešní krytiny stanoveny v regulativních požadavcích územního plánu měst a obcí.

Autoři děkují kolegům, kteří poskytli své příspěvky, a rovněž firmám, jež umožnily použít své materiály v této publikaci. Odkazy na spolupracující firmy a další společnosti, jejichž profesní činnost souvisí s danou tematikou, jsou jmenovány přímo v textu. Pro snadnější orientaci čtenářů jsou v přehledu literatury uvedeny odkazy na internetové stránky firem se stručným popisem jejich činnosti.

Za autorský kolektiv

Brno, leden 2013
1 Vlivy působící na střešní konstrukce

Střešní konstrukce je součástí obvodového pláště budovy, který odděluje vnitřní prostředí objektu od vnějšího, a je proto výrazně namáhána zejména povětrnostními vlivy. Dle využití podstřešního prostoru přibývají pak další aspekty, které působí na střešní konstrukci. Rozhodující vlivy, které je nutno zohlednit při návrhu nosné konstrukce a střešního pláště, jsou tyto:

- zeměpisná poloha a s ní spojené charakteristiky vnějšího prostředí – teplota vnějšího vzduchu, sníh, vítr, intenzita deště a slunečního záření, seismicitu apod.,
- spad a chemické exhalace,
- biologické a bakteriologické vlivy,
- hluk a chvění,
- vlivy vnějšího i vnitřního provozu – zatížení od provozu, požární bezpečnost apod.,
- vliv vlastní tíhy konstrukce a střešního pláště.

Tyto vlivy se liší intenzitou, dobou a délku působení, záleží vždy na konkrétním umístění, konstrukčním systému a využití objektu. Dle délky působení jsou vlivy stálé, tj. působící po celou dobu životnosti konstrukce (např. zeměpisná poloha, vlastní tíha konstrukce), vlivy dlouhodobé (např. exhalace), periodicky se opakující (např. sluneční záření, kolísání teplot v ročních či čtyřadvacetihodinových periodách), krátkodobé (např. déšť, sníh, vítr) či mimořádné (např. seismické otřesy). [8]

S ohledem na působící vlivy jsou na střešní konstrukci kladeny konkrétní požadavky, které musejí být dodrženy při návrhu, realizaci i následné údržbě využívaného objektu. Podrobněji jsou jednotlivé požadavky rozvedeny v kapitolách 1.1 až 1.6.

1.1 Vliv zeměpisné polohy

Polohopisné a výškopisné umístění objektu určuje hlavní povětrnostní vlivy působící na obvodový plášť objektu. Důležité je také umístění objektu s ohledem na okolní zástavbu a konfiguraci blízkého okolí – budova umístěná v údolí uprostřed zástavby nebudeme tak výrazně namáhána například působením větru jako stejné budova postavená na návrší mimo obytnou oblast.

Střešní konstrukce musejí být navrženy tak, aby byly schopny odolávat působení klimatických jevů bez zhoršení nebo jen s přípustným zhoršením svých fyzikálních, mechanických a jiných užitných vlastností.
1.1.1 Vliv teploty a vlhkosti vnějšího vzduchu

Teplota a vlhkost vnějšího vzduchu jsou důležitými okrajovými podmínkami pro tepelně-vlhkostní návrh střešního pláště, zejména s ohledem na ochranu tepla, možnost kondenzace vodní páry, průvzuďušnost a ovlivňování teplot vnitřního vzduchu v objektu. Z těchto hledisek se analyzují zejména vnější poměry v zimním a letním období, případně i vliv kolísání teploty či vlhkosti v průběhu dne a nocí. Konkrétní hodnoty teploty a vlhkosti vzduchu v exteriéru můžeme pro dané místo stavby v ČR nalézt v ČSN 73 0540, podobně jako tepelnětechnické požadavky na obvodový plášť. Případně lze vycházet přímo ze statistických měření hydrometeorologických ústavů. V současné době, kdy je často diskutován otázka energetické náročnosti budov zahrnující také množství energie potřebné pro chlazení interiéru, narůstá na významu posouzení tepelné stability objektu v letním období.

Změny teplot vnitřního vzduchu mají za následek objemové změny materiálů a s nimi související napjatost a případné destrukce. Teplota povrchu střechy je závislá také na působení slunečního záření, barvě, emisivitě a struktuře povrchu krytiny a na tepelné vodivosti vrstev pod povrchem – tmavá střešní krytina může být v letních měsících namáhána teplotou až kolem 85 °C. Při návrhu vnějších vrstev střechy a jejich kotvení je nutné počítat s tepelnou roztažností použitých materiálů. Podle údajů o namáhání střech teplotou obsažených v ČSN 73 1901 [59] se pro posuzování teplotní roztažnosti prvků střech uvažuje v ČR obvykle s teplotním rozmezím 100 K. Z hlediska statiky se počítá zatížení střech teplotou dle ČSN EN 1991-1-5 (Eurokód 1) [43]. Změny tvaru použitých materiálů vlivem teplotních výkyvů vedou k navrhování tzv. dilatačních spár v rámci vrstev střešního pláště.

Působení teplot může urychlit chemickou korozí a celkové stárnutí použitých materiálů v konstrukci střešního pláště nebo v kombinaci s vodou může vést k rozrušování pórovitých látek. Teplota a vlhkost mají také vliv na zpracování materiálů při realizaci střešní konstrukce.

1.1.2 Vliv slunečního záření

Sluneční záření má více složek, z nichž je velmi nebezpečné zejména ultrafialové spektrum způsobující degradaci řady stavebních materiálů. U střešních konstrukcí jsou to krytiny, případně povlakové vodotěsné vrstvy, které jsou těmto účinkům vystaveny nejvíce a musí vykazovat dostatečnou odolnost vůči tomuto záření. Některé krytiny, jako např. přírodní břidlice, měděný plech, skleněné, betonové nebo keramické tašky, již svým vlastním složením dlouhodobě odolávají působení UV paprsků. Jiné materiály, zejména na bázi plastů nebo asfaltů, prošly vývojem, kdy se jejich odolnost podstatně zvýšila.

Dle ČSN 731901 [59] musí být konstrukce střechy navržena z takových materiálů, které odolávají působení UV záření. Pokud se použije z tohoto pohledu nevyhovující materiál, musí být zabudován tak, aby na něj po celou dobu životnosti konstrukce nemohlo dopadat přímé ani odražené sluneční záření.

Přímé sluneční záření dále způsobuje zvýšení teploty povrchových materiálů, jak bylo již popsané v předcházejícím odstavci.
1.1.3 Vlivy atmosférických srážek

Atmosférické srážky v jakékoli podobě výrazně ovlivňují střešní konstrukci, at jí i statickým, či dynamickým působením, nebo působením vlhkosti. Patří sem déšť, sníh, námraza, kroupy apod. Konkrétní údaje o těchto vlivech (jejich zatížení, intenzitě atd.) lze získat z dlouhodobého měření a statistického vyhodnocování hydrometeorologických ústavů nebo z příslušných norem.

Sníh

Zatížení vyvolané sněhovou pokrývkou či námrazou je jedna ze základních složek zatížení u střešní konstrukce. Hodnoty charakteristické (základní) tříhy sněhu jsou pro dané místo stavby uvedeny v mapě sněhových oblastí ČR obsažené v příloze ČSN EN 1991-1-3 (Eurokód 1) [41]. Nejvyšší zatížení se vyskytuje v horských oblastech, které odpovídají 8. sněhové oblasti s charakteristickou hodnotou zatížení sněhem větší než 4 kN/m² (resp. 400 kg/m²) půdorysné plochy střechy. Výsledné zatížení sněhem uvažované pro statický návrh konstrukce je dále ovlivněno tvarem a sklonem střechy, kdy se zvažuje také možnost tvorby závějí a zadržování sněhu na střeše (např. při použití sněhových zachytávačů). Stavby se doporučuje navrhovat tak, aby bylo omezeno ukládání sněhu na střechách.

Všechny části konstrukce v přímém styku se sněhovou pokrývkou mohou být namáhány hydrostatickým tlakem, který vzniká v důsledku fyzikálních přeměn sněhu ve vodu. Sníh se na střeše může kvůli gravitaci, fyzikálním přeměnám a větru pohybovat a způsobovat tak i dynamické namáhání konstrukce a namáhání krytiny třením a nárazy. Skluz sněhu po střeše je ovlivněn kromě tvaru střechy taky materiálem krytiny, slunečním zářením, tepelným tokem z interiéru i prohříváním krytiny sluncem na místech bez sněhové pokrývky. Upřednostňuje se volný skluz sněhu ze střechy, nesmí ovšem dojít k ohrožení provozu v okolí objektu. Pro zadržení sněhu, omezení dynamických účinků na krytinu při skluzu a k úpravě pohybu sněhu na střeše je možné použít například sněhové zachytávače nebo rozrážecí klíny. Dále se musí počítat s možností vlivu námrazy, která vzniká v důsledku kontaktu roztáčeného sněhu s chladnými povrchy materiálů. Voda může zamrzat i na vodotěsné vrstvě pod skladanou krytinou. [59]

Vítr

Podobně jako sníh se i vítr značnou měrou podílí na zatížení střech. Statické posouzení konstrukce vůči působení větru vychází z ČSN EN 1991-1-4 [42] (Eurokód 1). Jeho vliv vzrůstá s výškou objektu, s ohledem na tvar střechy a hmotnost samotné konstrukce. Vítr může působit jako statické zatížení – tlak směrem kolmo na povrch konstrukce nebo jako sání působící směrem od povrchu konstrukce (sání může způsobovat nadzvednutí krytiny nebo jiných vnějších vrstev střechy) –, nebo jako zatížení dynamické projevující se například formou rozkmitání konstrukce, připadně vyvoláním nepříznivých akustických vlivů. V některých případech (zejména u krytin s tvarovaným povrchem) je třeba uvážit i vliv tření. Výraznější namáhání větrem je uvažováno u okrajových částí střech, například u okapů, rohových oblastí budov a atik, kde je pak potřeba řešit výraznější kotvení jednotlivých vrstev a částí střech. Na účinky zatížení větrem, včetně zvýšených hodnot zatížení, musí být navržena nosná konstrukce střechy i konstrukce střešního pláště.
Konstrukce šikmých střech

Déšť

Dle požadavků stanovených v ČSN 73 1901 [59] se střecha navrhuje tak, aby voda nepronikla do chráněných konstrukcí ani do podstřešních prostor a byla bezpečně odváděna odvodňovacím systémem. U šikmých střech se jedná zejména o okapní systémy, jejichž dimenze je odvozena z velikosti odvodňované plochy, typu odvodňovaného povrchu (což vyjadřuje tzv. součinitel odtoku) a intenzity dešťových srážek v dané lokalitě. Vydatnost deště lze určit jejím dlouhodobým měřením nebo dle ČSN 75 6760 [62]. Obvykle lze vycházet z hodnoty 0,025 l/(s·m²), která odpovídá průtrži mračen. Potřebné profily odvodňovacích prvků lze pak stanovit v souladu s ČSN 73 36 10 [60]. Podrobněji je odvodu vody ze střech věnována kapitola 3.

Zatížení od vlastní tíhy dešťových srážek se při návrhu střechy obvykle neuvažuje, pokud se nejedná o konstrukci s možností nashromáždění dešťové vody (například při nefunkčnosti střešního vtoku u plochých střech, u zelených střech nebo v místech překážek toku vody).

Dešťové a další srážky mohou navíc ovlivňovat konstrukci mechanickým působením nebo i chemickým působením tzv. kyselého deště.

1.1.4 Vliv seismicity

Zavedením evropských norem do soustavy české legislativy a jejich závazností je nutné budovy dimenzovat také na účinky seismického zatížení. Zatížení a systém výpočtu popisuje ČSN EN 1998-1 (Eurokód 8) [46]. U střešních konstrukcí se bude jednat z tohoto pohledu o vhodné vytvoření prostorového nosného systému střechy, správné řešení kotvení a dalších detailů. Zásadní je navržení účinných výztužných a stabilizačních systémů.

1.2 Spad a chemické exhalace

V ovzduší se běžně vyskytují znečišťující plynné, kapalné i pevné částice, které mají na obvodové pláště budov negativní přímý nebo nepřímý vliv (až po reakci s dalšími látkami, při spolupůsobení vlhkosti apod.). Způsobují různé druhy a stupně degradace vlastností materiálů. Podstatnou roli při rozrušování povrchových vrstev mají také další spolupůsobící vlivy, jako je například ozón, UV záření nebo fotochemické oxidanty, které ještě více umocňují vliv fotochemického smogu.

Mezi z tohoto pohledu nebezpečné plynné látky v ovzduší patří třeba oxid siřičitý či sírový, oxid dusíku nebo chlorovodík. Tyto látky způsobují degradaci některých organických materiálů (pryže, plastů, nátěrových hmot) a spolu se vzdušnou vlhkostí vytvářejí kyseliny, jež urychlí například korozí kovových materiálů.

Nejnebezpečnější kapalnou látkou je kyselina sírová, vyskytující se v podobě tzv. kyselého deště. Jedná se o vzdušný oxid siřičitý zoxidovaný na oxid sírový, který následně se vzdušnou vlhkostí reaguje a vytváří kyseliny. Účinek oxidu kyselin na poliamidy, celulózu, polyestery a další látky může vyvolat hydrolytické štěpení polymerů a tím urychlovat jejich stárnutí.

Znečištěné ovzduší obsahuje různé prašné částice, jejichž agresivita závisí na chemickém složení a chemických vlastnostech. Ve vodě nerozpustné částečky emise nejsou nijak
závažné, problémem jsou spíše chemicky aktivní anionty, které mohou značně zvyšovat korozní účinky atmosféry. Negativní vliv mají částice způsobující abrazi nebo zašpinění povrchu (například saze, popílek). Největším problémem částečkového spadu je usazování nečistot a zrníček zeminy a následný růst vegetace na střechách. Z tohoto pohledu se doporučuje zejména v oblastech s větším znečištěním ovzduší navrhovat hladké nebo lehce čistitelné krytiny a ideálně také provést střechy s větším spádem.

Běžné atmosférické vlivy zahrnují kombinaci chemických, tepelných a elektromagnetických vlivů přírodního původu na střechu.

1.3 Biologické a bakteriologické vlivy

V ovzduší se nacházejí i bakterie a biologické látky, které se do něj dostávají prouděním vzduchu. Jedná se zejména o dřevokazné houby, plesně nebo hmyz, který pak napadá dřevěné konstrukce. Dalším nebezpečím jsou u ozeleněných střech biologické a bakteriologické účinky na hydroizolaci, resp. na vodotěsnící vrstvu; zde je nutné navrhovat materiály odolné vůči půdnímu bioklimatu a proti prorůstání kořenů rostlin. Podobně riziko vzniká při nechtěném růstu zeleně na střechách v místech zanesených nečistotami. Biologické vlivy tedy zahrnují působení živočichů, rostlin i mikroorganismů, popřípadě jejich produktů. Negativní vliv na střešní krytiny má například ptačí trus v místech výskytu holubů, čápů apod. V podkrovním prostředí se mohou vyskytovat exkrementy netopýrů a kunovitých živočichů, které přispívají k degradaci dřeva.

Někteří výrobci stavebních materiálů mají již speciální atesty na biologickou a bakteriologickou odolnost svých výrobků. [8]

1.4 Hluk a chvění

Při návrhu střešní konstrukce je potřeba zohlednit také akustické namáhání konstrukce, jehož původcem může být zdroj hluku umístěný mimo objekt, zdroj připevněný ke střeše nebo situovaný v interiéru budovy a rovněž dynamické účinky větru. Posuzuje se tedy šíření hluku z vnějšího prostoru do chráněného vnitřního prostoru staveb (například do obytného podkroví) a také naopak zatěžování okolního prostředí hlukem od provozu v daném objektu (například u průmyslové výrobní haly).

Rozlišujeme dvě varianty přenosu hluku – přenos zuvu vlněním ve větrném prostředí, ve němž se zdroj vyskytuje, tj. obvykle vzdouchem, a přenos zvuku kmitání či chvění konstrukce. Vzduchem šířené zvukové vlnění způsobují vnější nebo vnitřní zdroje hluku způsobují blízké letiště, ventilátor vzdouchotechniky umístěný v podkrovní pokojí. Z tohoto pohledu je potřeba navrhnout střešní plášť a případně i další konstrukce s dostatečnou vzduchovou neprůzvučností.

Zařízení připevněné ke stavební konstrukci může způsobovat při svém provozu také nežádoucí vibrace, které jsou dále přenášeny vedením zvuku materiálem do všech navazujících prvků stavby. Toto šíření zvuku je možné omezit vhodným kotvením nebo uložením zdroje hluku na konstrukci, úpravami v technologii samotného zařízení, výběrem méně hluchného zařízení, změnou v umístění zdroje hluku podkroví a požadavky
na konstrukce z hlediska akustiky jsou uvedeny v ČSN 73 0532 [50] nebo v příslušných hygienických předpisech, podrobněji jsou popsány také v kapitole 4.1.3.

1.5 Vlivy vnějšího a vnitřního provozu

V důsledku konkrétního využití objektu a také využití jeho střešní konstrukce vyvstávají další požadavky na střešní konstrukci. Jedná se zejména o již zmíněné akustické zatížení konstrukce od provozu v objektu nebo v jeho blízkosti, dále o stanovení požární odolnosti používaných materiálů a konstrukcí nebo o provozní, respektive užitné zatížení vyvolané užíváním stavby.

Provozní využívání střech jakožto střech pochozích, pojízdných, heliportů apod. je záležitostí obvykle plochých střech se sklonem max. 5°. U šikmých střech s výraznějším spádem není provozní využívání obvyklé (zejména z hlediska bezpečnosti provozu na střeše) a vyšší zatížení může zvýšit například u ozeleněné varianty střešního pláště. Nicméně při návrhu střešní konstrukce je potřeba vždy zohlednit také údržbu a přístup k zařízením nebo technologickým prvky umístěným na střeše, například ke komínů. Minimálně dotčená část střešní plochy musí takto vyhovovat potřebnému provoznímu zatížení.

Vnitřní provoz může vyvolat zvýšené požadavky na konstrukce například nutnost kotvení jeřábové dráhy nebo dalších provozních zařízení. Zatížení stavebních konstrukcí pro následný statický návrh je popsáno zejména v ČSN EN 1991-1-1 (Eurokód 1) [39].

Co se týká požární odolnosti střešní konstrukce, vychází se při návrhu nosné konstrukce a střešního pláště (zejména podhledových konstrukcí) z požadavků ČSN 73 0802 [53] a souvisejících norem. Vstupními údaji jsou zejména požární zatížení v interiéru či exteriéru stavby, požární odstupové vzdálenosti, možnost požárního zásahu a hašení nebo únik osob v době požáru z objektu. Požární bezpečnosti střešních konstrukcí jsou věnovány kapitoly 4.1.4 a 7.2.

1.6 Vliv vlastní tíhy střešní konstrukce

Vlastní tíha střešní konstrukce ovlivňuje obvykle i návrh celého nosného systému budovy, protože se jedná o nejsvřchnější část objektu, která je podepřena níže umístěnými prvky systému. Záleží na hmotnosti jak nosné konstrukce zastřešení, tak na skladbě střešního pláště. Značnou roli při návrhu mají klimatické vlivy, jako je sníh a vítr (viz např. kapitolu 1.1.3). Povětrnost působí na střešní plášť a zatížení se přenáší nosnou konstrukcí dále do konstrukčního systému objektu.

U vlastní hmotnosti střešního pláště hraje výraznou roli tíha samotné krytiny, v případě využívaného podstřešního prostoru pak také typ použité podhledové konstrukce. Z hlediska možných skladeb šikmých střech je asi nejširší variantou tzv. zelená střecha, kdy je při návrhu nosná konstrukce potřeba zvážit také tíhu vlhkých vegetačních vrstev.

Dále se nesmí opomenout také další zařízení, například technologická, jež jsou ke střešní konstrukci připevněna nebo na ni zavěšena. Při výpočtu zatížení se vychází z ČSN EN 1991-1-1 (Eurokód 1) [39] nebo z podkladů jednotlivých výrobčů stavebních konstrukcí, materiálů či technologických zařízení.
2 Základní tvary šikmých střech

Sklonité střechy se vyznačují spádem střešních rovin vyšším než 5°, kdy střechy o sklonu 5° < α ≤ 45° nazýváme šikmými a střešní konstrukce se sklonem vyšším jsou označovány jako strmé.

Tvar střechy je závislý na půdorysu a účelu budovy. Spád střešních rovin je ovlivněn tvarem střechy a druhem použité krytiny nebo opačně. Pro návrh střešního pláště je nutné předem teoreticky vyřešit jeho tvar a sestrojit průměty průsečnic (hřebeny, nároží, úbočí, úžlabí) jednotlivých střešních rovin. Vzhledem k tomu, že při teoretickém řešení střech se předpokládá umístění celé střechy na půdorysné průmětně, je okap stopou příslušné střešní roviny. Pro názornost bude vhodné popsat používané názvosloví u tvarování střech, jedná se o tyto základní části:

- okap – nejnižší vodorovný okraj střešní plochy (voda zde odtéká ze střešní plochy),
- štít – okraj střechy, kde voda teče rovnoběžně a nestéká mimo střešní plochu,
- hřeben – vodorovná průsečnice střešních ploch, od níž střešní plochy sestupují,
- nároží – sklonitá průsečnice, od níž střešní plochy sestupují,
- úbočí – sklonitá průsečnice, ke které střešní plochy sestupují,
- úžlabí – jedná se o úbočí s minimálním spádem; je to oblast střechy v okolí průniku střešních rovin, která často vyžaduje jiné řešení, zejména vodotěsnicí vrstvy, oproti přilehlé části střešních rovin,
- sběžště – proniky nároží a hřebene,
- atika – ohraničující konstrukce na okraji střechy vystupující nad přilehlou úroveň střechy; obvykle se používá k zabránění toku vody ze střechy na chráněné konstrukce.

Podle tvaru střešní plochy mohou být jednotlivé střešní plochy vytvářené konstrukcí krovu:
- rovinné,
- zakřivené,
- kombinované.

Podle geometrického tvaru se šikmé střechy dělí na:
- pultové,
- sedlové,
- valbové,
- polovalbové,